вселенная

Постов: 28 Рейтинг: 46914
1499

Подводная Вселенная.

Развернуть
Подводная Вселенная.
1574

Космические зонды "Вояджеры" продолжают совершать удивительные открытия

Развернуть
Космические зонды
В августе 2012 года космический зонд «Вояджер-1» стал первым рукотворным космическим аппаратом, добравшимся туда, куда ранее никто и никогда не добирался: он достиг так называемой «гелиопаузы» — внешних границ гелиосферы Солнца — и вошел в межзвездное пространство. Перед тем как «Вояджер-1» покинул «пузырь» Солнечного воздействия, он собрал немало интересных данных.

Теперь космический аппарат «Вояджер-2» совершает то же самое путешествие – проходит через внешний слой нашей гелиосферы, направляясь в неизвестность. Однако через пять лет он сможет предоставить совсем иные по сравнению с «Вояджером-1» данные.

Тем не менее Стоун все же привел некоторое сравнение, правда без каких-либо утверждений. Работать в проекте космической миссии «Вояджер-1» он начал еще с 1972 года, поэтому прекрасно понимает, насколько собранные зондами данные уникальны для науки. В рамках своего выступления он рассказал о разнице между тем, что увидел «Вояджер1» и «Вояджер-2», проходя внешние границы гелиосферы и предоставляя беспрецедентно уникальные данные о внешней структуре «пузыря», который мы называем своим домом.

В центре этого «пузыря» находится наше Солнце, излучающее потоки высокозаряженных частиц, называемых солнечным ветром. Как только эти потоки становятся более рассеянными, они формируют вокруг нашей системы что-то вроде «планетарной атмосферы», пузыря, оболочки, если хотите, которая называется гелиосферой.

Как и в случае атмосферы Земли, гелиосфера отделяет благодаря магнитному полю те объекты и материю, которые находятся внутри этого пузыря, от тех объектов и материи, которые находятся за ее пределами. В этом случае речь идет о межзвездном ветре, состоящем из различных частиц, оставленных после себя мертвыми звездами. Грубо говоря – магнитное поле Солнца создает гигантский пузырь размером около 100 астрономических единиц (1 а. е. = дистанция между Солнцем и Землей).
Космические зонды
Космические зонды
Однако гелиосфера не герметична. Межзвездное пространство и гелиосфера находятся в постоянном взаимодействии, как правило, на уровне малоизученного нами региона, носящего название «гелиощит». Именно этот отрезок пространства в настоящий момент преодолевает космический зонд «Вояджер-2». В рамках своего выступления на конференции и в последующих интервью Стоун рассказал о том, что полученная от зонда информация позволяет по-новому взглянуть на то, что происходит в этом отрезке космоса.

Когда «Вояджер-1», двигаясь к северу от солнечного экватора, пересек гелеощит между 2004-2012 годами, он стал свидетелем возросшего количества высокозаряженных частиц, называемых галактическими космическими лучами. Однако когда «Вояджер-2» стал пересекать гелеощит с южной части солнечного экватора, этих лучей он не заметил.


Стоун предполагает, что такая разница может объясняться тем, что в настоящий момент мы находимся в более активной фазе солнечного цикла. Галактические космические лучи весьма активны. И их число, пересекающих границы нашей системы, резко возрастает со снижением активности солнечного ветра. Вполне вероятно, что свидетелем именно такого явления и оказался «Вояджер-1», когда пересекал границу.


Факт того, что наше Солнце способно снижать свой максимум активности, может в конечном итоге помочь объяснить еще одно несоответствие. Дело в том, что данные «Вояджера-2» указывают на то, что внутри гелиощита солнечный ветер может приобретать закрученную форму и отклоняться от общего потока, образуя очень длинный хвост, похожий на хвост кометы.
Космические зонды
По крайней мере именно это и ожидали увидеть ученые, согласно нашему теоретическому пониманию того, что происходит с солнечным ветром, когда он сталкивается с межзвездным ветром. Однако «Вояджер-1» таких изменений в направлении солнечного ветра не наблюдал.

Космический аппарат «Вояджер-1», находящийся на расстоянии 137 астрономических единиц от Солнца, направляется в сторону созвездия Змееносца, что на севере от солнечного экватора. «Вояджер-2» находится на расстоянии 113 астрономических единиц от родной звезды и ускоряется в сторону созвездия Павлина, что на юге. Стоун подозревает, что «Вояджер-2» войдет в межзвездное пространство в течение года или двух, однако в этом пока никто не уверен.

Однако ожидания Стоуна, кажется, совсем не волнуют, и он готов дождаться результатов.
Если вас интересует вопрос о том, насколько долго зонды смогут держать с нами связь, то объясним. РИТЭГи обоих космических аппаратов работают на базе плутония-238, чей период полураспада составляет 88 лет. Жестокая реальность заключается в том, что с каждым годом у зондов остается меньше питания для работы, по сравнению с каждым предыдущим годом.

Если все пойдет, как было запланировано, то у обоих зондов в запасе еще пара десятков лет до тех пор, пока они не канут в пустоту. А пока до этих дней миссия космических аппаратов «Вояджер-1» и «Вояджер-2» будет продолжать дарить нам новые знания о нашем космическом «пузыре» и бесконечной неизвестности, что лежит за его пределами.
Космические зонды
156

Тут опять прямая трансляция работ в открытом космосе началась.

Развернуть
11297

Пост для моего подписчика!

Развернуть
Есть у меня один подписчик...
Пост для моего подписчика!
Пост для моего подписчика!
Пост для моего подписчика!
... и такие комментарии от него, практически в каждом моем посте.
Короче, мне все это надоело и я решил найти его и ликвидировать, добавить его в игнор-лист, запилить для него пост...
***
Пост для моего подписчика!
, слушай, я не знаю как тебя зовут, поэтому буду называть тебя Александром (имя выбрал случайно).
***

Короче, Сань, бросай нах..й все дела и летим со мной, хочу показать тебе одну звезду.
На орбите Земли нас уже ждет космический корабль.
Предупреждаю сразу - путь не близкий. 165 000 световых лет. Ну а так как путешествовать со скоростью света (300 000 км/с) мы еще не научились, то мы полетим на нашей обычной, земной так сказать, скорости - 50 000 км/ч. А это значит, что к месту назначения мы прибудем через....(только не пугайся) 4 миллиарда лет !
Да ладно тебе, не ссы, че ты так побледнел?
У меня есть хавка, бухло, пара надувных баб и два компа с "танками" и пятой GTA )
Ну а если уж совсем скучно станет - ляжем спать в анабиозные камеры.
Пост для моего подписчика!
Ну чё, полетели?
***
Пост для моего подписчика!
***

Ладно, пока ты приходишь в себя после анабиоза, быстро введу тебя в курс дела.
Мы сейчас находимся в Большом Магелановом Облаке.
Пост для моего подписчика!
Это крошечная, карликовая галактика, спутник нашего Млечного Пути. Ну как у Земли - спутник Луна, так же и у нашей галактики есть ...бл..ть, Саня, зае..ал, "харош" бухать, дай сюда бутылку, ты меня вобще слушаешь, нет?
С - Да, да, слушаю: так же и у нашей галактики есть...
Да, есть свои спутники.
Если ты посмотришь в иллюминатор то увидишь звездное скопление.
Пост для моего подписчика!
Это NGC 2070 или, как его еще называют Туманность "Тарантул".
Именно в этом звездном скоплении находится та звезда о которой я тебе говорил.
Вот она...
Пост для моего подписчика!
С - Ну и что в ней такого особенного?
Блин, Сань, не поверишь, в ней все особенное!
Но давай по порядку...
***

1. Масса/плотность.

В основном огромные звезды, это всего навсего гигантские скопления раскаленного газа...
Пост для моего подписчика!
Пост для моего подписчика!
Взять например ...
Пост для моего подписчика!
Пост для моего подписчика!
Так вот, при своем огромном размере VY Большого Пса весит всего 17 солнечных масс. Понимаешь да? Она больше Солнца в 1600 раз, а тяжелее всего в 17 !
А вот тебе еще пример... 
Пост для моего подписчика!
UY Щита больше нашего Солнца в 1700 раз, а весит всего 8,5 солнечных масс.
Но что касается R136a1, тут все совсем по другому.
Она больше нашего Солнца всего в 32 раза, зато тяжелее в... 260 раз !!!
Для звезды подобных размеров это просто колоссальная масса! Представляешь какая у нее плотность и сила гравитации?!
***

2. Температура.
Сань, ты где этим летом отдыхал? В Египте? Я просто смотрю ты такой весь загоревший приехал. А знаешь почему ты загорел? Это тебя поджарило наше Солнце.
Наше Солнце, которое 1,4 миллиона км в диаметре и температурой в 5 000 градусов, поджарило тебя с расстояния в 150 миллионов км !!!
А ты знаешь что такое 150 000 000 км? Я тебе скажу. Это 144 года пути, если ехать на автомобиле со скоростью 120 км/ч. И это без всяких там остановок, заправок, сна, еды и т.д.
144 года, 150 миллионов км, 1,4 миллиона км в диаметре, 5 000 градусов...
А теперь я покажу тебе что будет с нашей планетой, если вдруг на месте Солнца окажется звезда R136a1...
***
Пост для моего подписчика!
А еще через сутки наша планета просто напросто сгорит, так же как и каждая планета нашей Солнечной системы. А все потому что температура звезды R136a1 составляет... 50 000 градусов !!! В десять раз больше чем температура Солнца!
***

3. Яркость.

Яркость звезды R136a1 в 8 миллионов раз превышает яркость Солнца!
Блин, это тоже самое как если бы у тебя в туалете была не одна лампочка. а 8 000 000 лампочек ) представляешь?!
***


Вот такая вот звезда R136a1. У меня все. , надеюсь ты доволен.
PS. При создании поста не пострадало ни одной Земли.
***
Извините за ошибки
alekseev77
491

Как долго лететь к ближайшей звезде? Часть первая:" Современные методы"

Развернуть
Как долго лететь к ближайшей звезде? Часть первая:
В какой-то момент жизни каждый из нас задавал этот вопрос: как долго лететь к звездам? Можно ли осуществить такой перелет за одну человеческую жизнь, могут ли такие полеты стать нормой повседневности? На этот сложный вопрос очень много ответов, в зависимости от того, кто спрашивает. Некоторые простые, другие сложнее. Чтобы найти исчерпывающий ответ, слишком многое нужно принять во внимание.

К сожалению, никаких реальных оценок, которые помогли бы найти такой ответ, не существует, и это расстраивает футурологов и энтузиастов межзвездных путешествий. Нравится нам это или нет, космос очень большой (и сложный), и наши технологии все еще ограничены. Но если мы когда-нибудь решимся покинуть «родное гнездышко», у нас будет несколько способов добраться до ближайшей звездной системы в нашей галактике.

Ближайшей звездой к нашей Земле является Солнце, вполне себе «средняя» звезда по схеме «главной последовательности» Герцшпрунга – Рассела. Это означает, что звезда весьма стабильна и обеспечивает достаточно солнечного света, чтобы на нашей планете развивалась жизнь. Мы знаем, что вокруг звезд рядом с нашей Солнечной системой вращаются и другие планеты, и многие из этих звезд похожи на нашу собственную.
Как долго лететь к ближайшей звезде? Часть первая:
Возможные пригодные для жизни миры во Вселенной

В будущем, если человечество желает покинуть Солнечную систему, у нас будет огромный выбор звезд, на которые мы могли бы отправиться, и многие из них вполне могут располагать благоприятными для жизни условиями. Но куда мы отправимся и сколько времени у нас займет дорога туда? Не забывайте, что все это всего лишь домыслы, и нет никаких ориентиров для межзвездных путешествий в настоящее время. Ну, как говорил Гагарин, поехали!

Дотянуться до звезды

Как уже отмечалось, ближайшая звезда к нашей Солнечной системе — это Проксима Центавра, и поэтому имеет большой смысл начать планирование межзвездной миссии именно с нее. Будучи частью тройной звездной системы Альфа Центавра, Проксима находится в 4,24 светового года (1,3 парсека) от Земли. Альфа Центавра — это, по сути, самая яркая звезда из трех в системе, часть тесной бинарной системы в 4,37 светового года от Земли — тогда как Проксима Центавра (самая тусклая из трех) представляет собой изолированный красный карлик в 0,13 световых лет от двойной системы.

И хотя беседы о межзвездных путешествиях навевают мысли о всевозможных путешествиях «быстрее скорости света» (БСС), начиная от варп-скоростей и червоточины до подпространственных двигателей, такие теории либо в высшей степени вымышлены (вроде двигателя Алькубьерре), либо существуют лишь в научной фантастике. Любая миссия в глубокий космос растянется на поколения людей.

Итак, если начинать с одной из самых медленных форм космических путешествий, сколько времени потребуется, чтобы добраться до Проксимы Центавра?

Современные методы

Вопрос оценки длительности перемещения в космосе куда проще, если в нем замешаны существующие технологии и тела в нашей Солнечной системе. К примеру, используя технологию, используемую миссией «Новых горизонтов», 16 двигателей на гидразиновом монотопливе, можно добраться до Луны всего за 8 часов и 35 минут.

Есть также миссия SMART-1 Европейского космического агентства, которая двигалась к Луне с помощью ионной тяги. С этой революционной технологией, вариант которой использовал также космический зонд Dawn, чтобы достичь Весты, миссии SMART-1 потребовался год, месяц и две недели, чтобы добраться до Луны.
Как долго лететь к ближайшей звезде? Часть первая:
От быстрого ракетного космического аппарата до экономного ионного двигателя, у нас есть парочка вариантов передвижения по местному космосу — плюс можно использовать Юпитер или Сатурн как огромную гравитационную рогатку. Тем не менее, если мы планируем выбраться чуть подальше, нам придется наращивать мощь технологий и изучать новые возможности.

Когда мы говорим о возможных методах, мы говорим о тех, что вовлекают существующие технологии, или о тех, которых пока не существуют, но которые технически осуществимы. Некоторые из них, как вы увидите, проверены временем и подтверждены, а другие пока остаются под вопросом. Вкратце, они представляют возможный, но очень затратный по времени и финансам сценарий путешествия даже к ближайшей звезде.

Ионное движение

Сейчас самой медленной и самой экономичной формой двигателя является ионный двигатель. Несколько десятилетий назад ионное движение считалось предметом научной фантастики. Но в последние года технологии поддержки ионных двигателей перешли от теории к практике, и весьма успешно. Миссия SMART-1 Европейского космического агентства — пример успешно проведенной миссии к Луне за 13 месяцев спирального движения от Земли.
Как долго лететь к ближайшей звезде? Часть первая:
SMART-1 использовала ионные двигатели на солнечной энергии, в которых электроэнергия собиралась солнечными батареями и использовалась для питания двигателей эффекта Холла. Чтобы доставить SMART-1 на Луну, потребовалось всего 82 килограмма ксенонового топлива. 1 килограмм ксенонового топлива обеспечивает дельта-V в 45 м/с. Это крайне эффективная форма движения, но далеко не самая быстрая.

Одной из первых миссий, использовавших технологию ионного двигателя, была миссия Deep Space 1 к комете Боррелли в 1998 году. DS1 тоже использовал ксеноновый ионный двигатель и потратил 81,5 кг топлива. За 20 месяцев тяги DS1 развил скорости в 56 000 км/ч на момент пролета кометы.

Ионные двигатели более экономичны, чем ракетные технологии, поскольку их тяга на единицу массы ракетного топлива (удельный импульс) намного выше. Но ионным двигателям нужно много времени, чтобы разогнать космический аппарат до существенных скоростей, и максимальная скорость зависит от топливной поддержки и объемов выработки электроэнергии.

Поэтому, если использовать ионное движение в миссии к Проксиме Центавра, двигатели должны иметь мощный источник энергии (ядерная энергия) и большие запасы топлива (хотя и меньше, чем обычные ракеты). Но если отталкиваться от допущения, что 81,5 кг ксенонового топлива переводится в 56 000 км/ч (и не будет никаких других форм движения), можно произвести расчеты.

На максимальной скорости в 56 000 км/ч Deep Space 1 потребовалось бы 81 000 лет, чтобы преодолеть 4,24 светового года между Землей и Проксимой Центавра. По времени это порядка 2700 поколений людей. Можно с уверенность сказать, что межпланетный ионный двигатель будет слишком медленным для пилотируемой межзвездной миссии.

Но если ионные двигатели будут крупнее и мощнее (то есть скорость исхода ионов будет значительно выше), если будет достаточно ракетного топлива, которого хватит на все 4,24 светового года, время путешествия значительно сократится. Но все равно останется значительно больше срока человеческой жизни.

Гравитационный маневр

Самый быстрый способ космических путешествий — это использование гравитационного маневра. Этот метод включает использование космическим аппаратом относительного движения (то есть орбиту) и гравитации планеты для изменения пути и скорости. Гравитационные маневры являются крайне полезной техникой космических полетов, особенно при использовании Земли или другой массивной планеты (вроде газового гиганта) для ускорения.

Космический аппарат Mariner 10 первым использовал этот метод, используя гравитационную тягу Венеры для разгона в сторону Меркурия в феврале 1974 года. В 1980-х зонд «Вояджер-1» использовал Сатурн и Юпитер для гравитационных маневров и разгона до 60 000 км/ч с последующим выходом в межзвездное пространство.

Миссии Helios 2, которая началась в 1976 году и должна была исследовать межпланетную среду между 0,3 а. е. и 1 а. е. от Солнца, принадлежит рекорд самой высокой скорости, развитой с помощью гравитационного маневра. На тот момент Helios 1 (запущенному в 1974 году) и Helios 2 принадлежал рекорд самого близкого подхода к Солнцу. Helios 2 был запущен обычной ракетой и выведен на сильно вытянутую орбиту.
Как долго лететь к ближайшей звезде? Часть первая:
Из-за большого эксцентриситета (0,54) 190-дневной солнечной орбиты, в перигелии Helios 2 удалось достичь максимальной скорости свыше 240 000 км/ч. Эта орбитальная скорость была развита за счет только лишь гравитационного притяжения Солнца. Технически скорость перигелия Helios 2 не была результатом гравитационного маневра, а максимальной орбитальной скоростью, но аппарат все равно удерживает рекорд самого быстрого искусственного объекта.

Если бы «Вояджер-1» двигался в направлении красного карлика Проксимы Центавра с постоянной скорость в 60 000 км/ч, ему потребовалось бы 76 000 лет (или более 2500 поколений), чтобы преодолеть это расстояние. Но если бы зонд развил рекордную скорость Helios 2 — постоянную скорость в 240 000 км/ч — ему потребовалось бы 19 000 лет (или более 600 поколений), чтобы преодолеть 4,243 светового года. Существенно лучше, хотя и близко не практично.

Электромагнитный двигатель EM Drive

Другой предложенный метод межзвездных путешествий — это радиочастотный двигатель с резонансной полостью, известный также как EM Drive. У предложенного еще в 2001 году Роджером Шойером, британским ученым, который создал Satellite Propulsion Research Ltd (SPR) для реализации проекта, двигателя в основе лежит идея того, что электромагнитные микроволновые полости позволяют напрямую преобразовывать электроэнергию в тягу
Как долго лететь к ближайшей звезде? Часть первая:
Если традиционные электромагнитные двигатели предназначены для приведения в движение определенной массы (вроде ионизированных частиц), конкретно эта двигательная система не зависит от реакции массы и не испускает направленного излучения. Вообще, этот двигатель встретили с изрядной долей скепсиса во многом потому, что он нарушает закон сохранения импульса, согласно которому импульс системы остается постоянным и его нельзя создать или уничтожить, а только изменить под действием силы.

Тем не менее последние эксперименты с этой технологией очевидно привели к положительным результатам. В июле 2014 года, на 50-й конференции AIAA/ASME/SAE/ASEE Joint Propulsion Conference в Кливленде, штат Огайо, ученые NASA, занимающиеся передовыми реактивными разработками, заявили, что успешно испытали новую конструкцию электромагнитного двигателя.
Как долго лететь к ближайшей звезде? Часть первая:
В апреле 2015 года ученые NASA Eagleworks (часть Космического центра им. Джонсона) заявили, что успешно испытали этот двигатель в вакууме, что может указывать на возможное применение в космосе. В июле того же года группа ученых из отделения космических систем Дрезденского технологического университета разработала собственную версию двигателя и наблюдала ощутимую тягу.

В 2010 году профессор Чжуан Янг из Северо-Западного политехнического университета в Сиань, Китай, начала публиковать серию статей о своих исследованиях технологии EM Drive. В 2012 году она сообщила о высокой входной мощности (2,5 кВт) и зафиксированной тяге в 720 мн. В 2014 году она также провела обширные испытания, включая замеры внутренней температуры со встроенными термопарами, которые показали, что система работает.

По расчетам на базе прототипа NASA (которому дали оценку мощности в 0,4 Н/киловатт), космический аппарат на электромагнитном двигателе может осуществить поездку к Плутону менее чем за 18 месяцев. Это в шесть раз меньше, чем потребовалось зонду «Новые горизонты», который двигался на скорости 58 000 км/ч.

Звучит впечатляюще. Но даже в таком случае корабль на электромагнитных двигателях будет лететь к Проксиме Центавра 13 000 лет. Близко, но все еще недостаточно. Кроме того, пока в этой технологии не будут расставлены все точки над ё, рано говорить о ее использовании.

Ядерное тепловое и ядерное электрическое движение

Еще одна возможность осуществить межзвездный перелет — использовать космический аппарат, оснащенный ядерными двигателями. NASA десятилетиями изучало такие варианты. В ракете на ядерном тепловом движении можно было бы использовать урановые или дейтериевые реакторы, чтобы нагревать водород в реакторе, превращая его в ионизированный газ (плазму водорода), который затем будет направляться в сопло ракеты, генерируя тягу.
Как долго лететь к ближайшей звезде? Часть первая:
Ракета с ядерным электрическим приводом включает тот же реактор, преобразующий тепло и энергию в электроэнергию, которая затем питает электродвигатель. В обоих случаях ракета будет полагаться на ядерный синтез или ядерное деление для создания тяги, а не на химическое топливо, на котором работают все современные космические агентства.

По сравнению с химическими двигателями, у ядерных есть неоспоримые преимущества. Во-первых, это практически неограниченная энергетическая плотность по сравнению с ракетным топливом. Кроме того, ядерный двигатель также будет вырабатывать мощную тягу по сравнению с используемым объемом топлива. Это позволит сократить объемы необходимого топлива, а вместе с тем вес и стоимость конкретного аппарата.

Хотя двигатели на тепловой ядерной энергии пока в космос не выходили, их прототипы создавались и испытывались, а предлагалось их еще больше.

И все же, несмотря на преимущества в экономии топлива и удельном импульсе, самая лучшая из предложенных концепций ядерного теплового двигателя имеет максимальный удельный импульс в 5000 секунд (50 кН·c/кг). Используя ядерные двигатели, работающие на ядерном делении или синтезе, ученые NASA могли бы доставить космический аппарат на Марс всего за 90 дней, если Красная планета будет в 55 000 000 километрах от Земли.

Но если говорить о путешествии к Проксиме Центавра, ядерной ракете потребуются столетия, чтобы разогнаться до существенной доли скорости света. Потом потребуются несколько десятилетий пути, а за ними еще много веков торможения на пути к цели. Мы все еще в 1000 годах от пункта назначения. Что хорошо для межпланетных миссий, не так хорошо для межзвездных.

Продолжение Следует.......

494

Крюк света через гравитационную линзу позволил наблюдать далекую галактику

Развернуть
Крюк света через гравитационную линзу позволил наблюдать далекую галактику
Никогда прежде ученые не имели возможности наблюдать излучение настолько высокой энергии, идущее от космического объекта, расположенного настолько далеко от нас. Примерно 7 миллиардов лет назад гигантский взрыв произошел в окрестностях черной дыры, расположенной в центре одной галактики.

Этот взрыв сопровождался мощным выбросом гамма-излучения. Несколько телескопов, включая телескоп MAGIC, смогли запечатлеть этот свет. Кроме того, эти находки позволили в очередной раз убедиться в справедливости положений Общей теории относительности Эйнштейна, так как лучи, идущие от этой далекой галактики, встретили на пути к Земле другую галактику – и были отклонены действием её гравитации, что называется эффектом гравитационного линзирования.
Крюк света через гравитационную линзу позволил наблюдать далекую галактику
Крюк света через гравитационную линзу позволил наблюдать далекую галактику
Этот объект, называемый QSO B0218+357, представляет собой блазар, особый тип сверхмассивных черных дыр. В настоящее время ученые считают, что в центре каждой галактики находится сверхмассивная черная дыра. Черные дыры, активно поглощающие материю, называют активными черными дырами. Такие объекты испускают экстремально яркие джеты. Если эти выбросы направлены в сторону Земли, они носят название блазаров.
768

Олимп — потухший вулкан на Марсе

Развернуть
Олимп — потухший вулкан на Марсе
Одно из самых грандиозных мест в Солнечной системе - потухший марсианский вулкан Олимп. Этот колоссальный вулкан возвышается над марсианскими равнинами на 21,2 километров, а общая площадь составляет около 540 километров в поперечнике. На сегодняшний день это самый высокий вулкан и гора в Солнечной системе.

ля сравнения, Олимп больше нашего Эвереста в три раза. Вулкан настолько широк и высок, что где бы вы ни находились, вы бы не увидели его конца. По мнению ученых, из-за отсутствия на Марсе сильной тектонической активности, Олимп рос на протяжении миллионов лет. По оценкам ученых, возраст некоторых регионов вулкана не превосходит 2 миллиона. Это означает, что вулканический щит вполне все еще может быть в стадии активной вулканической деятельности.

Олимп является частью региона Тарсис, в котором находится множество других крупных вулканов. К примеру, поблизости от Олимпа находится еще 3 огромных вулкана: Арсиа, Павонис и Аскреус. И если бы не Олимп, то каждый из этих вулканов мог бы бороться за звание самого большого в Солнечной системе.
Олимп — потухший вулкан на Марсе
Высота Олимпа — 21,2 км от основания, что более чем вдвое превышает высоту вулкана Мауна-Кеа, являющегося самым высоким вулканом на Земле и возвышающегося на 10,2 км от основания. Диаметр Олимпа — около 540 км. Вулкан имеет крутые склоны по краям высотой до 7 км. Причины образования этих гигантских обрывов пока не нашли убедительного объяснения, хотя многие склоняются к версии подмыва склонов вулкана некогда существовавшим на Марсе океаном.

Длина вулканической кальдеры Олимпа — 85 км, ширина — 60 км. Глубина кальдеры достигает 3 км благодаря наличию шести перекрывающихся вулканических кратеров. Для сравнения — у крупнейшего на Земле вулкана Мауна Лоа на Гавайских островах диаметр кратера составляет 6,5 км
Олимп — потухший вулкан на Марсе
Атмосферное давление на вершине Олимпа составляет лишь 2 % от давления, характерного для среднего уровня марсианской поверхности (для сравнения — давление на вершине Эвереста составляет 25 % от показателя на уровне моря). Учитывая, что на поверхности Марса давление составляет менее 0,01 атмосферы, разреженность среды на вершине Олимпа почти не отличается от космического вакуума.

Олимп занимает столь большую площадь, что его невозможно увидеть полностью с поверхности планеты (дистанция, необходимая для обозрения вулкана, столь велика, что он будет скрыт из-за кривизны поверхности). Поэтому полный профиль Олимпа можно увидеть только с воздуха или орбиты. Соответственно, если встать на самой высшей точке вулкана, то его склон уйдёт за горизонт.

Олимп — потухший вулкан, образовавшийся благодаря потокам лавы, извергавшимся из недр и застывавшим. По всей видимости, извержения происходили в течении длительных периодов времени, о чём говорит тот факт, что ширина вулкана почти в 3 раза превышает его высоту.

Анализ снимков аппарата «Марс-Экспресс» показал, что самая свежая лава на склонах Олимпа имеет возраст предположительно около 2 млн лет. Таким образом, нельзя исключать того, что вулкан снова начнёт извергаться.
Олимп — потухший вулкан на Марсе
Сравнение размеров Олимпа и вулканических Гавайских островов.
Сравнительно большие размеры Олимпа объясняются тем, что Марс, вероятно, не имеет тектонических плит, в отличие от Земли. В силу отсутствия движения плит, вулкан может существовать очень долго. Олимп находится в провинции Фарсида, где расположены ряд других вулканов, в том числе гора Арсия, гора Павлина и гора Аскрийская, которые также имеют огромные размеры, хотя и уступают Олимпу. Эти три вулкана находятся в горах Фарсида, а Олимп расположен внутри впадины провинции Фарсида глубиной 2 км.

Территория, окружающая вулкан, во многих местах покрыта сетью небольших хребтов и гор. Эту горную систему называют Ореолом Олимпа. Ореол простирается на расстояние до 1000 км от вершины в виде огромных «лепестков». Происхождение Ореола входит в число марсианских загадок. Одна из гипотез связывает Ореол с разрушением склонов Олимпа, другая — с гипотетической ледниковой активностью, согласно ещё одной гипотезе, это остатки древних лавовых потоков, впоследствии подвергшихся разрушению и эрозии.
Олимп — потухший вулкан на Марсе
Сравнение высот от основания крупнейших известных гор солнечной системы.
На некоторых фотографиях участков Ореола, сделанных с высоким разрешением, видно множество параллельных полосок — ярдангов. Вероятно, их направление отражает преимущественную направленность ветров, дующих в этой местности. Ярданги обычно образуются на поверхности, которая легко поддаётся эрозии, например, при наличии вулканического пепла.
1108

Ионный двигатель - что это такое?

Развернуть
Ионный двигатель - что это такое?
Ионный двигатель — хорошо отработанная на практике и исторически первая разновидность электрического ракетного двигателя. Недостатком ионного двигателя является малая тяга (например, разгон космического аппарата с весом автомобиля от 0 до 100 км/ч требует больше двух суток непрерывной работы ионного двигателя), которую невозможно увеличить из-за ограничений объёмного заряда.

Однако малый расход топлива (точнее, рабочего тела) и продолжительное время функционирования ионного двигателя (максимальный срок непрерывной работы самых современных образцов ионных двигателей составляет более пяти лет) позволяет за длительный промежуток времени разогнать космический аппарат небольшого веса до приличных скоростей. Сфера применения: управление ориентацией и положением на орбите искусственных спутников Земли (некоторые спутники оснащены десятками маломощных ионных двигателей) и использование в качестве главного тягового двигателя небольшой автоматической космической станции. Характеристики ионного двигателя: потребляемая мощность 1-7 кВт, скорость истечения 20-50 км/с, тяга 20-250 мН, КПД 60-80 %. Рабочим телом является ионизированный газ (аргон, ксенон и т. п.).
Ионный двигатель - что это такое?
Ионному двигателю в настоящее время принадлежит рекорд негравитационного ускорения космического аппарата в космосе без использования жидкостного ракетного двигателя — Deep Space 1 смог увеличить скорость на 4,3 км/с, израсходовав 74 кг ксенона (этот рекорд скорости в ближайшее время планируется превзойти на 10 км/с космическим аппаратом Dawn). Однако ионный двигатель не является самым перспективным типом электроракетного двигателя, поэтому данный рекорд скорости, скорее всего, будет превзойдён холловским или магнитоплазмодинамическим двигателем.

Существует проект межзвёздного зонда с ионным двигателем, получающим энергию через лазер от базовой станции, что дает некоторое преимущество по сравнению с чисто космическим парусом (в настоящее время данный проект неосуществим из-за технических ограничений
Ионный двигатель - что это такое?
Принцип работы двигателя заключается в ионизации газа и его разгоне электростатическим полем. При этом, благодаря высокому отношению заряда к массе, становится возможным разогнать ионы до очень высоких скоростей (вплоть до 210 км/с по сравнению с 3—4,5 км/с у химических ракетных двигателей). Таким образом, в ионном двигателе можно достичь очень большого удельного импульса. Это позволяет значительно уменьшить расход реактивной массы ионизированного газа по сравнению с расходом реактивной массы в химических ракетах, но требует больших затрат энергии.

В существующих реализациях для поддержки работы двигателя используются солнечные батареи. Но для работы в дальнем космосе такой способ неприемлем. Поэтому уже сейчас для этих целей иногда используются ядерные установки.+
Ионный двигатель - что это такое?
Источником ионов служит газ — как правило, аргон или водород. Бак с газом стоит в самом начале двигателя, оттуда газ подаётся в отсек ионизации; получается холодная плазма, которая разогревается в следующем отсеке посредством ионного циклотронного резонансного нагрева. После нагрева высокоэнергетическая плазма подаётся в магнитное сопло, где она формируется в поток магнитным полем, разгоняется и выбрасывается в окружающую среду. Таким образом достигается тяга.

С тех пор плазменные двигатели прошли большой путь и разделились на несколько основных типов — электротермические, электростатические, сильноточные или магнитодинамические и импульсные двигатели. В свою очередь электростатические двигатели делятся на ионные и плазменные (ускорители частиц на квазинейтральной плазме).

Ионный двигатель использует в качестве топлива ксенон или ртуть. Первый ионный двигатель назывался сетчатый электростатический ионный двигатель. В ионизатор подаётся ксенон, который сам по себе нейтрален, но при бомбардировании высокоэнергетическими электронами ионизируется. Таким образом в камере образуется смесь из положительных ионов и отрицательных электронов. Для «отфильтровывания» электронов в камеру выводится трубка с катодными сетками, которая притягивает к себе электроны.
Ионный двигатель - что это такое?
Положительные ионы притягиваются к системе извлечения, состоящей из 2-х или 3-х сеток. Между сетками поддерживается большая разница электростатических потенциалов (+1090 вольт на внутренней против — 225 вольт на внешней). В результате попадания ионов между сетками, они разгоняются и выбрасываются в пространство, ускоряя корабль, согласно третьему закону Ньютона. Электроны, пойманные в катодную трубку выбрасываются из двигателя под небольшим углом к соплу и потоку ионов. Это делается по двум причинам:
чтобы корпус корабля оставался нейтрально заряженным;

чтобы ионы, «нейтрализованные» таким образом не притягивались обратно к кораблю.

Чтобы ионный двигатель работал, нужны всего 2 вещи — газ и электричество.

Недостаток двигателя в его нынешних реализациях — очень слабая тяга (порядка 50-100 миллиньютонов). Таким образом, нет возможности использовать ионный двигатель для старта с планеты, но, с другой стороны, в условиях невесомости, при достаточно долгой работе двигателя, есть возможность разогнать космический аппарат до скоростей, недоступных сейчас никаким другим из существующих видов двигателей. Однако разрабатываются более совершенные и мощные типы электроракетных двигателей (холловский и магнитоплазмодинамический), превосходящие ионный двигатель по величине тяги и, как следствие, конечной скорости космического аппарата.

Ребята если нравятся подобные темы ждем вас на нашем youtube-канале: Злой космос
467

Знаки Вселенной

Развернуть
Знаки Вселенной
794

Дебаты: Является ли Вселенная «Компьютерной Симуляцией?»

Развернуть
Участник и модератор Нил Деграсс Тайсон
Декарт спросил бы вас: «Откуда вы можете знать, что вас не дурачит некий злой гений, создавая ваше представление о мире, окружающем нас?» Действительно, откуда нам знать, что мы живём не в симуляции, вроде Матрицы? Достаточно ли данных у ученых 21 века, чтобы выдвинуть весомые аргументы «за» и «против» ? Почему мы чувствуем необходимость думать, что идея симуляция реальности может быть оправданной?
Перед вами двухчасовые свободные дебаты. Интереснейшая беседа шести ученых.
489

NASA бесплатно раздает космические ретро постеры

Развернуть
NASA бесплатно раздает космические ретро постеры
Посмотреть и скачать в высоком разрешении можно по ссылке.
2673

Когда вселенная услышала

Развернуть
Как-то в разговоре с женой дошли до темы "Мысли материальны".

Ж: Вот зря ты так скептически к этому относишься. У нас на работе есть тетка одна, так вот её сыну повестка в армию пришла. Она так не хотела, чтоб его забирали, что мы от нее каждый день слышали: "Хоть бы Димку не забрали, хоть бы не забрали!"
И знаешь, что произошло?!
Я (типа изображаю удивление): Да ладно?! Да не может быть?!
Ж: Да представь себе, его не забрали. Ему за день до призывной комиссии голову в клубе проломили...
304

Насколько большими могут быть звезды?

Развернуть
Насколько большими могут быть звезды?
Мерцающие звездочки кажутся крошечными точками света, но в реальности они огромны. Астрономы точно не знают, насколько большой может стать звезда, но при определенных обстоятельствах, похоже, они могут стать воистину колоссальными. Ближайшая к нам звезда — это, конечно, Солнце. Оно имеет массу порядка 2 миллионов триллионов триллионов килограммов (двойка и за ней тридцать нулей). Если бы Земля весила как скрепка для бумаг, Солнце весило бы как мотоцикл «Урал».

Хотя Солнце не такое уж и легкое, в действительности его вес немногим выше среднего. Около 1% звезд весят в восемь раз больше Солнца, и сущая горстка звезд в галактике весит как сто или двести солнц.

Самая известная массивная звезда — R136a1 (относится к голубым гипергигантам) — весит порядка 265 солнечных масс. Она настолько огромна, что ее открытие в 2010 году побудило астрономов пересмотреть свои теории о том, насколько массивной может звезда стать.

Это, в свою очередь, заставляет нас пересмотреть наши представления о первых звездах, которые когда-то были образованы. Оказывается, некоторые из этих первых звезд, родившихся всего спустя 200 миллионов лет после Большого Взрыва, могли весить в 100 000 раз больше Солнца, что делает их самыми массивными звездами в принципе. Вопрос в том, как R136a1 и эти первичные звезды вообще смогли стать такими большими?
Насколько большими могут быть звезды?
Масса звезды — не просто интересная величина. Это самая важная собственность звезды, определяющая, как звезда живет и умирает. Звезда — это гигантский шар горячего газа, настолько массивный, что его гравитация притягивает его самого к себе. Вследствие этого ядро звезды становится чрезвычайно плотным и горячим. Это запускает ядерную реакцию, в процессе которой пары атомов сливаются в более крупные, производя много тепла и давления, которое толкает звезду обратно наружу.

Жизнь звезды висит в этом балансе между гравитацией и давлением. Как только заканчивается топливо, ядерный синтез останавливается и не может препятствовать коллапсу.

Судьба звезды и скорость ее выгорания полностью зависит от ее массы.
Насколько большими могут быть звезды?
Массивные звезды в несколько десятков солнечных масс выгорают быстро и ярко. Они живут всего несколько сотен миллионов лет, прежде чем взорваться в виде сверхновой и оставить за собой плотные, экзотические объекты вроде черной дыры или нейтронной звезды.

И напротив, небольшие звезды вроде Солнца медленно и стабильно выгорают миллионы лет, прежде чем стать звездными трупиками — белыми карликами.

Самая маленькая звезда может быть 0,08 солнечной массы, исходя из относительно уверенных и простых расчетов. Звезда именно такой массы достаточно массивна, чтобы запустить ядерный синтез. Все, что меньше, будет просто шаром газа. Но если астрономы хорошо понимают минимальную массу звезды, на другом конце все размыто. «Это одна из самых крупных неразрешенных загадок астрофизики», — говорит Волкер Бромм, астрофизик Техасского университета в Остине, США.

Еще десять лет назад астрономы думали, что верхний предел звездных масс в текущей Вселенной составляет 150 солнечных масс. «Было много хороших свидетельств в пользу этого предела, как из теорий, так и из наблюдений», — говорит Пол Краутер из Университета Шеффилд в Великобритании.
Насколько большими могут быть звезды?
Вам должно повезти, чтобы вы увидели звезду с высокой массой, поскольку срок их жизни очень короток. Звезды в сто или больше солнечных масс умирают за пару миллионов лет: мгновение ока по космическим меркам.

Одно из многообещающих мест для поиска такой звезды — это кластер Арки, одна из самых плотных коллекций звезд в Млечном Пути. Этот кластер, казалось, сформировался относительно недавно, поскольку наиболее массивные звезды еще живы. Вокруг него также валяется много материала для звездообразования, обеспечивая среду, благоприятную для звездных гигантов.

Но астрономы не смогли найти звезды с массой больше 150 солнечных. Возможно, подумали они, звезды просто не могут стать настолько массивными. В какой-то момент звезда должна стать настолько массивной и яркой, что ее радиация сдувает внешние слои, препятствуя дальнейшему росту. Это естественное ограничение массы называется пределом Эддингтона, и расчеты предполагают, что он близок к 150 солнечным массам.
Насколько большими могут быть звезды?
Но в 2010 году Краутер и группа астрономов изучила еще более тяжелую группу звезд скопления R136. Там они обнаружили не одну, а даже несколько звезд, превзошедших предел в 150 солнечных масс. Самая удивительная, которая R136a1, была невероятной массы в 265 солнечных.

Более того, возможно, она была еще тяжелее, когда родилась.

R136a1 — звезда Вольфа — Райе: это означает, что она массивная, яркая и горячая, с мощной радиацией, которая сдувает ее внешние слои. Ее температура порядка 53 000 градусов по Цельсию, и светится она в 10 миллионов раз ярче Солнца. Даже если она молода, едва ли больше миллиона лет, она уже потеряла газа на 50 наших Солнц.

Из чего следует, что R136a1 когда-то весила больше 300 солнц. Намного больше предела в 150 солнечных масс.
Насколько большими могут быть звезды?
Превышение этого предела не составило проблемы. Предыдущие оценки предела Эддингтона оказались относительно сырыми, говорит Краутер, и более подробные расчеты показали, что звезды могут быть намного более массивными — в теории, по крайней мере.

Что касается кластера Арки, астрономы обнаружили, что он старше, чем думали раньше, и по-настоящему массивные звезды давно уже перестали существовать. R136, впрочем, намного моложе изначальных звезд.

Как бы то ни было, тяжеловесы вроде R136a1 — редкость. В Млечном Пути их может быть совсем мало, говорит Краутер. «Самый большой вопрос в том, как они набрали такую массу», — говорит он.

Чтобы растущая звезда набрала массу, необходимо время. Звездам вроде Солнца нужно порядка 10 миллионов лет на образование. Но звезды вроде R136a1 живут всего пару миллионов лет, поэтому они должны были образоваться сотни тысяч лет назад.

Никто не знает наверняка. Одна из идей заключается в том, что эти колоссальные звезды образуются, когда сталкиваются длинные нити холодного и плотного газа. За последние пару лет Космическая обсерватория Гершеля в Европе обнаружила такие нити по всей галактике. Каждая вытягивается на несколько световых лет.
Насколько большими могут быть звезды?
Когда эти нити сталкиваются между собой, могут образоваться плотные объемы газа, которые коллапсируют в звезду, давая жизнь одновременно целому звездному скоплению. Большинство этих новых звезд будет мелкими, некоторые массивными, а еще меньше гигантскими вроде R136a1.

Трудно понять, как именно это происходит. «Детали довольно размыты, я бы сказал», — говорит Краутер. Эти регионы массивного звездообразования скрыты облаками плотной межзвездной пыли, поэтому даже самый мощные телескопы с трудом могут через них пробиться.

Гигантские звезды могут также образоваться, когда звезды сливаются между собой. Большинство тяжелых звезд пребывают в парах, так или иначе, поэтому если пара таких звезд будет иметь массу в несколько десятков раз превышающую солнечную, они могут слиться в одну большую звезду.

Как звезды вроде R136a1 становятся такими большими, пока остается загадкой, но самые первые звезды удивляют еще больше. Они воистину огромны.

Спустя 200 миллионов лет после Большого Взрыва было много света. Когда облака газообразного водорода и гелия коллапсировали в первые звезды Вселенной. В отличие от современных звезд, все они были намного более массивными. Многие весили десятки солнечных масс, некоторые достигали сотни или двух. Те первые звезды могли доходить до этого, поскольку космическая среда была другой. В частности, не было тяжелых химических элементов.

Тяжелые элементы важны, поскольку помогают охлаждать газовые облака. В горячем газе атомы мельтешат туда сюда и сталкиваются друг с другом. Тяжелые элементы могут преобразовать эту энергию столкновения в свет, который затем будет излучен. Так уходит тепло.

Но тяжелые элементы существовали не всегда. Они были выкованы из ядерного синтеза в ядрах звезд и во взрывных смертях массивных звезд. Поколение за поколением, звезды производили все элементы, которые мы находим в космосе сегодня. Когда появились первые звезды, в мире был лишь водород, гелий и крошечные доли лития.

Без тяжелых элементов, газовые облака остывали с трудом, а значит, им было тяжелее коллапсировать в звезды. Чтобы компенсировать это, каждое облако росло все больше и больше, набирая больше тяжести, чтобы спровоцировать коллапс. В результате рождались звезды, которые более массивны, чем современные звезды.

В течение многих десятилетий никто не знал наверняка, насколько именно массивней. Совсем недавно астрономы пришли к открытию: те звезды могли быть намного больше, чем считалось ранее.

Астрономы обнаружили квазары, существующие в течение миллиарда лет после Большого Взрыва.

Квазары — это чрезвычайно яркие объекты, которые подпитываются черной дырой в миллионы или миллиарды раз больше массы Солнца. Черная дыра питается закрученным диском пыли и газа, выбрасывая мощные пучки энергии.
Насколько большими могут быть звезды?
И снова загадка: как там образовались эти сверхмассивные черные дыры?

Черные дыры образуются, когда звезды исчерпывают свое топливо и коллапсируют. Чтобы черная дыра стала сверхмассивной, она должна поглотить много массы в форме ближайшего газа и пыли, либо слиться с другими черными дырами.

Проблема в том, что эти квазары существовали в такой ранней истории космоса, что сверхмассивные черные дыры должны были набрать свой вес за невероятно короткий промежуток времени. Исходя из теории и компьютерных симуляций, даже звезды в несколько сотен солнечных масс не смогли бы вырасти так быстро, чтобы стать сверхмассивными.

Существует решение этого парадокса, но оно включает в себя по-настоящему гигантские звезды в 100 000 солнечных масс. Рядом с такими звездами даже R136a1 была бы карликом.

Компьютеры расчеты показывают, что облако в миллион солнечных масс может коллапсировать в звезду с массой в 100 000 солнц. Условия тоже должны быть подходящими: никаких тяжелых элементов и много ультрафиолетового излучения, которое дополнительно препятствует охлаждению газовых облаков.

Звезда таких размеров будет неустойчивой и может моментально коллапсировать в черную дыру. Эта черная дыра затем продолжит наращивать свою массу, потребляя пыль и газ, либо сливаясь с другими черными дырами, пока не станет достаточно массивной, чтобы питать квазар.

Таковая теория. «Наши компьютеры терпеливо создают такие объекты, — говорит Александр Хегер из Университета Монаша в Австралии. — Но существуют ли они в природе, у нас нет никаких прямых доказательств этого. Все они теоретические на данный момент».
Насколько большими могут быть звезды?
Мы могли бы получить прямые доказательства, если бы наблюдали за слиянием черных дыр.

Когда две черные дыры сталкиваются, они создают рябь на поверхности ткани пространства-времени, гравитационные волны. Европейский лазерный интерферометр eLISA должен будет обнаружить их, когда его запустят после 2028 года. Измеряя эти волны, астрономы смогут определить массы сливающихся черных дыр и их возможное происхождение из сверхмассивных звезд.

Астрономы также ждут следующего поколения телескопов, среду которых космический телескоп Джеймса Уэбба, Тридцатиметровый телескоп, Европейский Чрезвычайно Большой телескоп и Гигантский Магелланов телескоп. Эти обсерватории могли бы найти первые черные дыры, рожденные из сверхмассивных звезд. Они даже могли бы уловить звезду в процессе коллапса в черную дыру.

Такие открытия могут перевернуть наше понимание звезд и космоса в целом. Поняв, с чего начались первые массивные звезды, астрономы могли бы узнать, какими были первые галактики.

«Вопрос о природе первых звезд и пределах их массы может рассказать нам об особенном моменте космической истории. До него Вселенная была простым и скучным местом, в котором даже не было источников света».
832

Минимальный размер Вселенной

Развернуть
Наблюдаемая Вселенная
Минимальный размер Вселенной
Говоря о нашей Вселенной, мы различаем «Вселенную» и «наблюдаемую Вселенную». Последнее включает лишь то, что мы можем видеть. Я не имею в виду, что у нас есть технология, чтобы реально «видеть» всю наблюдаемую вселенную. Я имею в виду под «наблюдаемыми» все объекты, свет от которых в принципе мог дойти до нас, учитывая время жизни Вселенной, скорость света и историю и будущее расширения Вселенной. Возраст Вселенной составляет 13,8 миллиардов лет. Из-за конечности скорости света мы не можем видеть то, что расположено от нас настолько далеко, что свету на путешествие до нас потребовалось бы больше времени, чем существует Вселенная. Это не технологическое ограничение – это ограничение того, существует ли в принципе тот свет, который мы могли бы увидеть, будь у нас в распоряжении любая технология.

Когда мы смотрим на окраины наблюдаемой Вселенной, мы смотрим в прошлое. Если свету потребовалось 13,7 миллиарда лет, чтобы дойти до нас, значит, мы видим Вселенную такой, какой она была 13,7 миллиарда лет назад, а не такой, какая она сейчас.

В целом Вселенная, возможно, бесконечна. Заявить это просто, но эту концепцию очень сложно представить, если подумать. Одним из решений этой проблемы можно назвать предложение не заморачиваться этим. Если вы задаёте себе вопросы типа «как она может расширяться, если она бесконечна», вы неправильно представляете себе бесконечность. Бесконечность – это концепция, а не число.

Однако Вселенной не обязательно быть бесконечной. Согласно ОТО, существуют и другие возможности. Я разделю их на две категории, но поговорим мы подробно только об одной из них.

Интересные топологии

Возможно, что у Вселенной интересная топология. Топология отличается от геометрии. Геометрия включает такие вещи, как длину линий, радиус кривизны, суммы углов полигонов и т.п. Топология занимается тем, как соединены между собой разные части пространства.

Рассмотрим, в качестве примера, классическую игру Asteroids:
Минимальный размер Вселенной
Игра идёт в очень маленькой двумерной вселенной. Геометрия вселенной Asteroids евклидова – параллельные линии не пересекаются, отношение длины окружности к диаметру равно π, сумма трёх внутренних углов треугольника равна 180° и так далее. Но если вы играли в эту игру, вы знаете, что если уйти за левый край экрана, то вернёшься с правого края. Если уйти с верхнего края, то вернёшься с нижнего. Вселенная не имеет границ, вы никогда не упрётесь в границу, или край. Но она конечна. Её топология тороидальная – такая же, как у поверхности бублика, хотя геометрия её отличается от геометрии бублика (поверхность бублика искривлена).

Возможно, что наша Вселенная ведёт себя так же. У неё может быть плоская геометрия, но такая топология, что если вы двигаетесь в одном направлении, вы вернётесь туда, откуда пришли. Если у неё действительно такая топология, то она проявляется на масштабах крупнее наблюдаемой Вселенной. Иначе мы бы увидели подтверждение такой топологии (например, части космоса повторяли бы друг друга, если долго идти в одном направлении) в микроволновом космическом излучении.

Так что пока мы примем, что у Вселенной нет никаких интересных топологий. Либо это бесконечное пространство, либо это конечное пространство, представляющее собой трёхмерный эквивалент поверхности сферы.

Возможные геометрии Вселенной

Геометрия Вселенной не обязана быть евклидовой. В зависимости от общей плотности энергии (включая плотность обычной материи, тёмной материи и тёмной энергии), для кривизны Вселенной существуют три возможности.
Минимальный размер Вселенной
Параметр Ω – удобный способ обсуждения плотности Вселенной. Существует критическая плотность, зависящая от текущей скорости расширения Вселенной. Она составляет 9*10-30 гр/см. Вроде бы немного, но учтите, что Вселенная практически пустая. Земля – сравнительно плотное место по сравнению с большей частью Вселенной. Параметр Ω определяется, как отношение плотности Вселенной к критической. Если Ω = 1, то геометрия Вселенной плоская. Плоская – не значит двумерная, в том смысле, в котором вы привыкли говорить о плоскости. Это значит, что геометрия пространства евклидова, как та, что вы изучали в школе.

Если Ω>1, геометрия Вселенной закрытая. В этом случае геометрия у Вселенной будет такой же, как у трёхмерной поверхности четырёхмерной гиперсферы. Если это звучит непонятно, представьте себе это как трёхмерный эквивалент поверхности сферы. При этом у четырёхмерной гиперсферы не обязательно должно быть четвёртое пространственное измерение. Это просто означает, что геометрия Вселенной – как ведут себя параллельные линии, чему равна сумма углов треугольника, или отношение длины окружности к диаметру – такие же, как геометрия на поверхности сферы. Можно описать математику этой геометрии, используя только лишь три пространственных измерения, поэтому высшие измерения могут не понадобиться. Однако, для нужд нашего описания, стоит представить себе поверхность сферы, поскольку это поможет получить представление об устройстве такой вселенной. Поверхность сферы – двумерная закрытая вселенная. Помните, что вселенная – это поверхность. У неё нет центра, его нет в пределах вселенной – поскольку всё, что в ней содержится, находится на поверхности сферы и ни одна из её точек не отличается от других.

Если Ω<1, геометрия Вселенной открытая. Это представить уже труднее. Кусочек открытой трёхмерной вселенной не получится впихнуть для визуализации в три измерения, так, как это прокатывает с закрытой вселенной. Однако ближайшим двумерным эквивалентом будет седло или чипсы (являющиеся гиперболоидами, или гиперболическими параболоидами). Это безграничная и бесконечная вселенная. Она продолжается бесконечно. При этом она не плоская и у неё будет интересная геометрия.

Геометрия нашей Вселенной

Геометрию своей вселенной можно узнать несколькими способами. Например, можно построить в космосе треугольник из трёх прямых. Затем нужно измерить угол между каждыми из пар линий. Если вы сложите их и получите 180°, вы находитесь в плоской вселенной. Если сумма превысит 180°, это будет закрытая вселенная; если она будет меньше 180°, то это будет открытая вселенная. Проблема лишь в точности измерений. Либо нужно мерить эти углы с невероятной точностью, либо рисовать очень большие треугольники – такие, чтобы длина одной из его сторон приближалась к радиусу кривизны вашей вселенной. (Степень приближения зависит от точности измерения углов).

По сути, мы это сделали. Измерения микроволнового космического излучения (МКИ) дали нам треугольники. Одна сторона треугольника получается из характерного размера флюктуаций в МКИ. Мы знаем их физический размер. Другие получаются из пути света, путешествующего с двух сторон этой флюктуации. Измеряя угол между лучами света, идущими с каждой из сторон, мы можем выяснить геометрию треугольника. Мы это сделали. Ответ: наша Вселенная плоская. Однако, как с любыми физическими величинами, в наших измерениях есть погрешность. Судя по последним подсчётам, значение Ω находится между 0,9916 и 1,0133, с 95% точностью. Это значит, что всё ещё существует возможность того, что наша Вселенная бесконечна (Ω≤1) или конечна (Ω>1).

Минимальный размер нашей Вселенной

Космос велик. Он просто огромен. Вы даже не поверите, насколько он умопомрачительно громаден. Вам может казаться, что от вашего дома до аптеки далеко, но это просто ерунда в сравнении с космосом.

Принесём извинения Дугласу Адамсу и подсчитаем размер нашей Вселенной.

Во-первых, возраст Вселенной составляет 13,8 миллиардов лет. Это очень долго по сравнению с нашими жизнями, но для Вселенной — возраст вполне подходящий. Край наблюдаемой Вселенной находится от нас на расстоянии 48 миллиардов световых лет. «Погодите-ка!»,- можете закричать вы. «Как свет может за 13,8 миллиардов лет преодолеть расстояние в 48 миллиардов световых лет!». Вспомните, что за то время, пока свет шёл к нам, Вселенная расширялась. В каком-то смысле свет пытался «нагнать» расширение. Это несовершенное описание и если вам знакома СТО, вы будете возражать. Но это имеет некий смысл в контексте ОТО.

Как этот размер соотносится с общим размером Вселенной? Если мы предположим, что Ω=1,0133, а это максимальная плотность энергии, соответствующая текущим данным, и, значит, наименьшая из закрытых вселенных – то сможем подсчитать размер Вселенной. Результат выглядит примерно так:
Минимальный размер Вселенной
Поверхность сферы обозначает размер всей Вселенной, где Ω=1,0133. Матовая часть находится вне наблюдаемой нами Вселенной; кусочек сверху – наблюдаемая Вселенная. Радиус кривизны этой вселенной составляет 120 миллиардов световых лет. Её окружность – 760 миллиардов световых лет. Это значит, что диаметр наблюдаемой Вселенной составляет 1/8 от полной длины линии, которую нужно было бы провести в пространстве, чтобы она замкнулась на себя. Объём всей Вселенной в 100 раз превышает объём наблюдаемой. (Если вы возразите, что 83 не равно 100, вспомните, что пространство у нас неэвклидово и ваша интуиция по поводу радиусов и объёмов не работает).

Вспомним, что это минимальный размер Вселенной, согласно нашим данным. Большинство подозревает, что Вселенная реально неизмеримо больше, чем эта и может быть бесконечной.

Размер и судьба не связаны

Открыв любую книжку о космологии, написанную раньше 2000 года (и некоторые чуть более новые), вы, скорее всего, прочтёте, что закрытая вселенная реколлапсирует, а открытая – вечно расширяется. Но это так, только если плотность тёмной энергии вселенной нулевая! Эти описания неявно подразумевали, что в нашей Вселенной доминирует материя и в этом случае геометрия и судьба Вселенной были сильно связаны. В такой вселенной, как наша, где существует тёмная энергия, судьба и геометрия не связаны так сильно. Тёмная материя и тёмная энергия влияют как на форму Вселенной, так и на её судьбу, но влияют по-разному. Что именно случится с нашей Вселенной, зависит от того, какой именно окажется тёмная энергия. Но если она такая, как её представляет себе большинство из нас, Вселенная будет расширяться вечно и галактические кластеры будут всё дальше разлетаться друг от друга. При этом неважно, плоская наша Вселенная, открытая или закрытая.
Оригинал:
847

А задумывались ли вы?

Развернуть
А задумывались ли вы?
370

Оси вращения квазаров согласуются на расстояниях в миллиарды световых лет

Развернуть
С помощью телескопа Европейской южной обсерватории в Чили ученые выяснили, что оси вращения центральных сверхмассивных черных дыр в квазарах из сделанной ими выборки параллельны несмотря на то, что их разделяют расстояния в миллиарды световых лет. Ориентация осей вращения этих квазаров коррелирует с крупномасштабной структурой «космической паутины», в которой они находятся.
Квазары являются галактиками, в центрах которых находятся сверхмассивные черные дыры, которые окружены вращающимися дисками очень горячего вещества, часто выбрасываемого в окружающее пространство в виде длинных лучей, ориентированных вдоль их осей вращения. Светимость таких черных дыр может быть значительно выше, чем у всех остальных звезд галактики, вместе взятых.


Оси вращения квазаров, как правило, параллельны ориентации крупномасштабной структуры Вселенной в той области пространства, где они расположены. Если квазар находится в длинном «волокне» крупномасштабной структуры, то спин его центральной черной дыры ориентирован вдоль оси волокна. По оценке исследователей, вероятность того, что такое совпадение ориентаций является случайным, не превосходит 1%.
Корреляция между ориентацией квазаров и структурой, которой они принадлежат — важное свойство, которое предсказывает численные модели эволюции Вселенной. Полученные учеными данные впервые подтверждают этот эффект, причем на масштабах, значительно превосходящих те, на которых до сих пор наблюдались нормальные галактики. Для получения результатов ученые измеряли поляризацию излучения от каждого из квазаров и зарегистрировали для 19 объектов поляризованный сигнал. Направление этой поляризации, в сочетании с другой информацией, позволило им вычислить угол наклона аккреционного диска, а следовательно и направление оси вращения квазара.


Полученное согласование данных на больших, чем предсказывает современное компьютерное моделирование, пространственных масштабах, может сигнализировать о том, что в современных моделях Вселенной, возможно, было пропущено важное звено.
источник
777

Когда небо свалилось на голову

Развернуть
Когда небо свалилось на голову
1170

Когда вся Вселенная против тебя

Развернуть
Когда вся Вселенная против тебя
2159

Утиная благотворительность.

Развернуть
Утиная благотворительность.
Утиная благотворительность.
Утиная благотворительность.
Утиная благотворительность.
Утиная благотворительность.
Утиная благотворительность.
Утиная благотворительность.
Утиная благотворительность.
Еще раз подчеркну, что я не призываю вас скидывать в какой то определенной фонд.  Понятно, что сагитировав 170 человек на это, я как раз отдам долг вселенной(просто в посте не упомянул).Всем благ!
1546

Альбинос Солнечной системы - Энцелад.

Развернуть
Альбинос Солнечной системы - Энцелад.