реактор

Постов: 9 Рейтинг: 11827
1021

Есть такая профессия - реакторы испытывать

Развернуть
Есть такая профессия - реакторы испытывать
Пролив на открытый реактор систем первого контура на готовящемся к запуску энергоблоке АЭС.
1366

С виду просто железяка

Развернуть
Маленький атомный реактор,  выставленный на постамент в одном из Беларуских НИИ
С виду просто железяка
1145

Кратко о вредности работы на АЭС

Развернуть
Пересекся недавно с монтажниками, которые выполняют самые "грязные" в плане радиации работы на реакторе. Слово за слово, разговорились, и я спросил у них, как со здоровьем, с учетом того что мужики ежегодно выбирают максимальную разрешенную дозу.
Ответ одного из них мне понравился: "Я с 90-го года тут работаю, всё хорошо у меня. Ну, а у кого здоровье послабее было, те умерли давно уже".

1512

А я знал, что так и было!

Развернуть
А я знал, что так и было!
1094

Китайские ученые продержали водородную плазму в стабильном состоянии 102 секунды

Развернуть
Китайские ученые продержали водородную плазму в стабильном состоянии 102 секунды
На днях на Geektimes публиковалась новость о том, что немецким ученым удалось получить водородную плазму в стеллараторе (). При этом в стабильном состоянии ученые продержали плазму всего долю секунды. Вчера китайские ученые добились еще более впечатляющих результатов(всегда найдётся азиат, который сделает лучше), далеко продвинувшись по сравнению со своими коллегами из Германии. Китайцы смогли нагреть плазму до температуры в примерно 50 млн градусов, и продержали плазму в стабильном состоянии 102 секунды()
Прорыв китайских ученых — это реальный шаг вперед в плане создания альтернативного источника энергии, способного поставлять человечеству огромное количество энергии, так необходимой всем нам. Эксперимент был проведен в термоядерном реакторе, установленном в Институте физических наук в городе Хэфэй (Hefei), столице провинции Цзянсу.
Китайские ученые продержали водородную плазму в стабильном состоянии 102 секунды
В отличие от немцев, китайцы работают с реактором типа токамак, их система получила название Experimental Advanced Superconducting Tokamak (EAST). Как уже говорилось выше, достигнутая температура плазмы — 50 млн градусов, в то время, как температура в центре Солнца, по оценкам специалистов, составляет примерно 15 млн градусов. До 50 млн градусов доходит и температура в центре термоядерного взрыва средней мощности.
До китайцев «температурный рекорд» был поставлен в другом эксперименте (), но его продолжительность составила доли секунды, и успех никогда не был повторен. 
Ученые из Японии и Европы могут также нагревать плазму до 50 млн градусов в своих реакторах. Но речь о сколько-нибудь продолжительном сохранении плазмы в стабильном состоянии не идет — специалисты просто боятся, что реактор расплавится. Как видим, китайцы смогли избежать этой проблемы. 
Китайские ученые продержали водородную плазму в стабильном состоянии 102 секунды
Реактор китайцев изнутри.
Для достижения текущего рекорда китайские ученые «работали день и ночь», говорится в официальном заявлении ученых. И это действительно достижение, поскольку до настоящего момента никто и никогда не удерживал плазму в стабильном состоянии дольше 20 секунд. Китайцы, по их словам, смогли решить ряд научных и инженерных проблем, включая контроль положения магнита, а также улавливание частиц высокой энергии, которые «убегали» из магнитного «пончика», поля, удерживающего плазму.
Китайские ученые продержали водородную плазму в стабильном состоянии 102 секунды
А это плазма в немецком стеллараторе, фотография сделана в декабре.
Китайцы планируют достичь более значительных результатов — нагреть плазму до 100 млн градусов и продержать ее в стабильном состоянии около 17 минут. До постройки же коммерческой модели реактора, которая будет давать энергию, остается еще очень много времени, годы, говорят китайские специалисты.

В Германии сейчас ставятся эксперименты на стеллараторе Wendelstein 7-X. Проведено уже два эксперимента, по получению гелиевой и водородной плазмы. Оба эксперимента прошли успешно.
1923

Ядерное топливо. Что это, как это, куда это и почему.

Развернуть
Ядерное топливо. Что это, как это, куда это и почему.
В наше время электроэнергию умеют добывать множеством разных способов. Из воды (гидро, приливные электростанции), из воздуха, из солнечного света, из природных ископаемых (газ, уголь) и даже из ядер делящегося вещества.
ТЭС, работающие на угле, потребляют невероятное количество топлива в сутки - это десятки тысяч тонн угля в сутки для мощных станций. Этот уголь надо ежедневно добыть, погрузить в вагоны, перевезти к станции и выгрузить там. С газом попроще - его добыча и транспортировка к электростанции выглядит проще, да и современные парогазовые турбоустановки работают очень эффективно.
Если же говорить про атомные электростанции, то их серьезное отличие в том, что единица ядерного топлива (твэл) способна выделять огромное количество энергии (тепла) долгое время. Про ядерное топливо мы сегодня и поговорим.

Добывают уран двумя основными способами:
1) Прямая добыча в карьерах или шахтах, если позволяет глубина залегания урана. С этим методом, надеюсь, всё понятно.
2) Подземное выщелачивание. Это когда на том месте, где найден уран, бурятся скважины, в них закачивается слабый раствор серной кислоты, а уже раствор взаимодействует с ураном, соединяясь с ним. Затем получившаяся смесь откачивается наверх, на поверхность, и из неё химическими методами выделяется уран.
Ядерное топливо. Что это, как это, куда это и почему.
Представим, будто мы уже добыли на руднике уран и подготовили его для дальнейших преобразований. На фото ниже - так называемый "желтый кек", U3O8. В бочке для дальнейшей перевозки.
Ядерное топливо. Что это, как это, куда это и почему.
Всё бы хорошо, и этот уран в теории можно было бы сразу использовать для производства топлива для АЭС, но увы нам. Природа, как всегда, подкинула нам работы. Дело в том что природный уран состоит из смеси трех изотопов. Это U238 (99.2745%), U235 (0.72%) и U234(0.0055%). Нас интересует здесь лишь U235 - так как он отлично делится тепловыми нейтронами в реакторе, именно он позволяет нам пользоваться всеми благами цепной реакции деления. К сожалению, его природной концентрации не хватит для стабильной и долгой работы современного реактора АЭС. Хотя, насколько я знаю, аппарат РБМК спроектирован так, что запуститься на топливе из природного урана сможет, но вот стабильность, долговременность и безопасность работы на таком топливе совершенно не гарантируется.

Уран нам надо обогатить. То есть повысить концентрацию U235 от природной до той, которая используется в реакторе.
Для примера, реактор РБМК работает на уране обогащения 2.8%, ВВЭР-1000 - обогащение от 1.6 до 5.0%. Судовые и корабельные ядерные энергетические установки кушают топливо с обогащением до 20%. А некоторые исследовательские реакторы работают на топливе аж с 90% обогащением (пример - ИРТ-Т в Томске).

В России обогащение урана проводится на газовых центрифугах. Т.е. тот желтый порошок, что был на фото ранее, превращают в газ, гексафторид урана UF6. Затем этот газ поступает на целый каскад центрифуг. На выходе из каждой центрифуги, из-за разности веса ядер U235 и U238, мы получаем гексафторид урана с чуть повышенным содержанием U235. Процесс повторяется многократно и в итоге мы получаем гексафторид урана с нужным нам обогащением. На фото ниже как раз можно увидеть масштаб каскада центрифуг - их очень много и простираются они в далекие дали.
Ядерное топливо. Что это, как это, куда это и почему.
Затем газ UF6 превращают обратно в UO2, в виде порошка. Химия, всё-таки, очень полезная наука и позволяет нам творить такие чудеса.
Однако этот порошок в реактор так просто не засыпать. Вернее, засыпать-то можно, но ничего хорошего из этого не выйдет. Его (порошок) надо привести к такому виду, чтобы мы могли надолго, на годы, опустить его в реактор. При этом само горючее не должно контактировать с теплоносителем и выходить за пределы активной зоны. И еще ко всему этому топливо должно выдерживать очень и очень суровые давления и температуры, которые возникнут в нём при работе внутри реактора.

Забыл, кстати, сказать что порошок тоже не абы какой - он должен быть определенных размеров, чтобы при спрессовывании и спекании не образовывалось ненужных пустот и трещин. Сначала из порошка делают таблетки, путем спрессовывания и долгого выпекания (технология действительно непростая, если её нарушить - топливные таблетки не будут годны к использованию). Вариации таблеток покажу на фото ниже.
Ядерное топливо. Что это, как это, куда это и почему.
Ядерное топливо. Что это, как это, куда это и почему.
Отверстия и выемки на таблетках нужны для компенсации теплового расширения и радиационных формоизменений. В реакторе со временем таблетки пухнут, выгибаются, изменяют размеры, и если ничего не предусмотреть - могут разрушиться, а это плохо.

Готовые таблетки затем упаковывают в металлические трубки (из стали, циркония и его сплавов и других металлов). Трубки закрывают с обоих концов и герметизируют. Готовая трубка с топливом называется твэл - тепловыделяющий элемент.
Ядерное топливо. Что это, как это, куда это и почему.
Для разных реакторов требуются твэлы разной конструкции и обогащения. Твэл РБМК, например, длиной 3.5 метра. Твэлы, кстати, бывают не только стержневые. как на фото. Они бывают пластинчатые, кольцевые, море различных видов и модификаций.

Твэлы затем объединяют в тепловыделяющие сборки - ТВС. ТВС реактора РБМК состоит из 18 твэлов и выглядит примерно вот так:
Ядерное топливо. Что это, как это, куда это и почему.
ТВС реактора ВВЭР выглядит вот так:
Ядерное топливо. Что это, как это, куда это и почему.
Как видно, ТВС реактора ВВЭР состоит из гораздо большего количества твэлов, чем у РБМК.

Готовое специзделие (ТВС) затем с соблюдением мер предосторожности доставляется на АЭС. Зачем предосторожности? Ядерное горючее, хоть пока и нерадиоактивно, очень ценное, дорогое, и при очень неаккуратном обращении способно вызвать много проблем. Затем проводится финальный контроль состояния ТВС и - загрузка в реактор. Всё, уран прошел долгий путь от руды под землей к высокотехнологичному устройству внутри ядерного реактора. Теперь у него другая судьба - несколько лет тужиться внутри реактора и выделять драгоценное тепло, которое у него будет забирать вода (или любой другой теплоноситель).

Когда пишу, каждый раз понимаю что нюансов и просто информации - очень много. Но самые основы описал и даже, надеюсь, правильно. Ваши вопросы и замечания всегда приветствуются.
Все фотографии взяты из интернета, авторам, если узнают своё творение, огромное спасибо.
736

Мощь ядерной реакции. Откуда берется электричество?

Развернуть
Мощь ядерной реакции. Откуда берется электричество?
   Уже писал про физику реактора, про управление им, даже были некоторые байки из жизни АЭС. Пришло время рассказать вам про то, как всё же огромная мощь, высвобождаемая при делении ядер топлива, превращается в электричество в ваших розетках.
   Сразу скажу - ничего особо удивительного не будет. Энергоблок АЭС - это огромный кипятильник, который кипятит много воды, та превращается в пар и затем вращает турбогенератор. Турбогенератор, с какой-то точки зрения, тоже можно рассматривать как простой вентилятор с динамо-машинкой. Энергия пара преобразовывается в движение ротора турбогенератора, а затем -  в электроэнергию. Но дьявол кроется в мелочах, о них, пожалуй, и поговорим.

РБМК
   В графитовой активной зоне этого реактора находятся 1693/1661 (в зависимости от модификации) каналов, в которых ядерное топливо греет воду. Вода подается снизу, расход в каждом канале примерно от 10 до 30 тонн воды в час. В целом по реактору прокачивается около 40000 тонн воды в час. Сорок. Тысяч. Тонн. Воды. В час.
   Так, ладно, хватит восхищаться цифрами. Вода, поступающая в канал, омывает топливные стержни и нагревается с 270 до 284 градусов Цельсия. Казалось бы, всего лишь 14 градусов, но этот небольшой подогрев позволяет вырабатывать нам достаточно пара для вращения турбин. Сначала, впрочем, пар этот надо отделить от воды...
   Смесь воды и пара из канала поднимается вверх, по специальным коммуникациям поступает в барабан-сепараторы, коих четыре - по два на каждую половину реактора. В них вода отделяется от пара. Пар уходит дальше, на турбины, а вода смешивается с поступающей более холодной, питательной, и уходит обратно в реактор. Всегда соблюдается баланс - расход пара должен быть равен расходу питательной воды, иначе воды в реакторе станет слишком мало, либо слишком много, а это не очень хорошо для стабильной работы.
   Тем временем пар приходит на турбины. Турбин на РБМК две - во времена проектирования и строительства этого реактора, насколько я знаю, не умели делать одновременно мощные (1000 МВт) и надежные турбины . Модель турбины, кому интересно,  К-500-65/3000.  У подобных турбин один цилиндр - высокого давления и четыре - низкого. Пар сначала поступает в цилиндр высокого давления, откуда поступает в  сепараторы-пароперегреватели (там он осушается и перегревается) и затем уходит в цилиндры низкого давления.
   После прохождения всех цилиндров пар поступает в конденсаторы, где и благополучно "схлопывается" до состояния жидкой воды. Потом конденсат очищается и, в качестве питательной воды, поступает в барабан-сепараторы.  Круг замкнулся.  Вода постоянно циркулирует по реактору, при этом пар, отделяющийся от воды, вращает турбину, а затем возвращается в контур циркуляции. 
   Турбина при этом вращается со скоростью 3000 оборотов в минуту, или же 50 оборотов в секунду. Ничего не напоминает? Частота в нашей энергосети 50 Герц, или те же самые 50 колебаний тока за секунду.
   Да, атомные станции - это кипятильники. Но кипятильники высокотехнологичные, очень мощные и долгоиграющие - ресурс нового энергоблока ВВЭР-ТОИ составляет 60 лет. При этом стоимость урана, затрачиваемого на подобное преобразование энергии, сравнительно невелика. На том стоим и стоять будем.
1110

И мои 5 копеек про рабочее место

Развернуть
Принимаю участие в сборе установки малоуглового рассеяния нейтронов SANS-2 на реакторе ПИК, г. Гатчина
И мои 5 копеек про рабочее место
1920

Фото ядерного реактора, сделанное каким-то чуваком

Развернуть
http://pikabu.ru/story/_2566580
Фото ядерного реактора, сделанное каким-то чуваком